Offer personalized services via a Machine Learning model based on anonymous data
Pôle Emploi teams collect a lot of data: structured, unstructured, time series, etc. Pôle Emploi needs to use some of this data to provide personalized services while complying with European rules.
The aim? Use anonymized data to feed the Machine Learning model. Avoid seeking new consent by ensuring regulatory compliance. Avoid sensitive data leaks.
F1 original score = 0.52
F1 avatar score = 0.52
Original AUC = 0.70
Avatar AUC = 0.69
Find the testimony by Laurent Guinard, head of the Data Service Agency & AI Factory department at France Travail, ex Pôle Emploi (2 min).
As a user of our method of anonymizing personal data, discover:
"La solution avatar d'Octopize est une solution innovante, élégante et qui, grâce à sa rapidité d’exécution, est facilement exploitable dans un système d'information." - Laurent Guinard, Responsable du département Agence Data Service & Usine IA @Pole Emploi
1 year won in data acquisition